
Phonetic fieldwork and experiments with the phonfieldwork package for R

George Moroz
Linguistic Convergence Laboratory, NRU HSE

08 August 2020, Grupo de estadística para el estudio del lenguaje

Presentation is available here: tinyurl.com/y6lf5ch4

’

1

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

2

Most phonetic research consists of the following steps:
1. Formulate a research question. Think of what kind of data is

necessary to answer this question, what is the appropriate amount
of data, what kind of annotation you will do, what kind of statistical
models and visualizations you will use, etc.

2. Create a list of stimuli.
3. Elicite list of stimuli from speakers who signed an Informed Consent

statement, agreeing to participate in the experiment to be recorded
on audio and/or video.

4. Annotate the collected data.
5. Extract the information from annotated data.
6. Create visualizations.
7. Evaluate your statistical models.
8. Report your results.
9. Publish your data.

The phonfieldwork package is created for helping with items 3, 4 (partially),
5, 6, and 9.

3

Most phonetic research consists of the following steps:
1. Formulate a research question. Think of what kind of data is

necessary to answer this question, what is the appropriate amount
of data, what kind of annotation you will do, what kind of statistical
models and visualizations you will use, etc.

2. Create a list of stimuli.
3. Elicite list of stimuli from speakers who signed an Informed Consent

statement, agreeing to participate in the experiment to be recorded
on audio and/or video.

4. Annotate the collected data.
5. Extract the information from annotated data.
6. Create visualizations.
7. Evaluate your statistical models.
8. Report your results.
9. Publish your data.

The phonfieldwork package is created for helping with items 3, 4 (partially),
5, 6, and 9.

3

Why/when do you need the phonfieldwork package?
These ideal plan hides some technical subtasks:

• creating a presentation for elicitation task
• renaming and concatenating multiple sound files
• automatic annotation in Praat TextGrids [Boersma andWeenink

2019]
• creating a searchable .html table with annotations, spectrograms and

ability to hear sound
• converting multiple formats (Praat, ELAN [Brugman et al. 2004] and

EXMARaLDA [Schmidt andWörner 2009])

All of these tasks can be solved by a mixture of different tools:

• any programming language can handle automatic file renaming
• Praat contains scripts for concatenating and renaming files

phonfieldwork provides a functionality that will make it easier to solve those
tasks independently of any additional tools. You can also compare the
functionality with other packages: rPraat [Bořil and Skarnitzl 2016],
textgRid [Reidy 2016], pympi [Lubbers and Torreira 2013]

4

Why/when do you need the phonfieldwork package?
These ideal plan hides some technical subtasks:

• creating a presentation for elicitation task
• renaming and concatenating multiple sound files
• automatic annotation in Praat TextGrids [Boersma andWeenink

2019]
• creating a searchable .html table with annotations, spectrograms and

ability to hear sound
• converting multiple formats (Praat, ELAN [Brugman et al. 2004] and

EXMARaLDA [Schmidt andWörner 2009])

All of these tasks can be solved by a mixture of different tools:

• any programming language can handle automatic file renaming
• Praat contains scripts for concatenating and renaming files

phonfieldwork provides a functionality that will make it easier to solve those
tasks independently of any additional tools. You can also compare the
functionality with other packages: rPraat [Bořil and Skarnitzl 2016],
textgRid [Reidy 2016], pympi [Lubbers and Torreira 2013]

4

Why/when do you need the phonfieldwork package?
These ideal plan hides some technical subtasks:

• creating a presentation for elicitation task
• renaming and concatenating multiple sound files
• automatic annotation in Praat TextGrids [Boersma andWeenink

2019]
• creating a searchable .html table with annotations, spectrograms and

ability to hear sound
• converting multiple formats (Praat, ELAN [Brugman et al. 2004] and

EXMARaLDA [Schmidt andWörner 2009])

All of these tasks can be solved by a mixture of different tools:

• any programming language can handle automatic file renaming
• Praat contains scripts for concatenating and renaming files

phonfieldwork provides a functionality that will make it easier to solve those
tasks independently of any additional tools. You can also compare the
functionality with other packages: rPraat [Bořil and Skarnitzl 2016],
textgRid [Reidy 2016], pympi [Lubbers and Torreira 2013] 4

Philosophy of the phonfieldwork package

• each stimulus is a separate file
• researcher carefully listens to consultants to make sure that they are

producing the kind of speech they wanted
• in case a speaker does not produce clear repetitions, researcher ask

them to repeat the task

There are some phoneticians who prefer to record everything for
language documentation purposes. I think that should be a separate task.
If you insist on recording everything, it is possible to run two recorders at
the same time: one could run during the whole session, while the other is
used to produce small audio files. You can also use special software to
record your stimuli automatically on a computer (e.g. PsychoPy [Peirce et al.
2009]).

5

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

6

Install phonfieldwork
phonfieldwork is an R package, so you need to install R, RStudio (optional) or
use rstudio.cloud. There are two possibilities for installing package in R:

• official version from CRAN
install.packages("phonfieldwork")

• development version from GitHub
devtools::install_github("agricolamz/phonfieldwork")

Since this package is under rOpenSci review there is a chance that in
couple months the adress could be changed to ropensci/phonfieldwork, and
documentation page will be moved from
agricolamz.github.io/phonfieldwork to docs.ropensci.org/phonfieldwork.
library("phonfieldwork")
packageVersion("phonfieldwork") # Unreleased version

[1] '0.0.8'

7

https://cloud.r-project.org/
https://rstudio.com/products/rstudio/download/#download
rstudio.cloud
https://github.com/ropensci/software-review/issues/385
agricolamz.github.io/phonfieldwork
docs.ropensci.org/phonfieldwork

Install phonfieldwork
phonfieldwork is an R package, so you need to install R, RStudio (optional) or
use rstudio.cloud. There are two possibilities for installing package in R:

• official version from CRAN
install.packages("phonfieldwork")

• development version from GitHub
devtools::install_github("agricolamz/phonfieldwork")

Since this package is under rOpenSci review there is a chance that in
couple months the adress could be changed to ropensci/phonfieldwork, and
documentation page will be moved from
agricolamz.github.io/phonfieldwork to docs.ropensci.org/phonfieldwork.
library("phonfieldwork")
packageVersion("phonfieldwork") # Unreleased version

[1] '0.0.8'
7

https://cloud.r-project.org/
https://rstudio.com/products/rstudio/download/#download
rstudio.cloud
https://github.com/ropensci/software-review/issues/385
agricolamz.github.io/phonfieldwork
docs.ropensci.org/phonfieldwork

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

8

Make a list of your stimuli

There are several ways to enter information about a list of stimuli into R:

• list them with the c() command
my_stimuli <- c("tip", "tap", "top")

• read from .csv file with the read.csv() function:
my_stimuli_df <- read.csv("my_stimuli_df.csv")

• read from .xls or .xlsx file with the read_xls() or read_xlsx() function
from the readxl package (run install.packages("readxl") in case you
don’t have it installed):

library("readxl")
my_stimuli_df <- read_xlsx("my_stimuli_df.xlsx")

9

Create a presentation based on a list of stimuli
create_presentation(stimuli = my_stimuli, # it is "tip" "tap" "top"

output_file = "first_example",
output_dir = "data/")

Here is the result.

It is also possible to use images (or .gif) as a stimuli:
my_image <- system.file("extdata", "r-logo.png", package = "phonfieldwork")
my_image

[1] "/home/agricolamz/R/x86_64-pc-linux-gnu-library/4.0/phonfieldwork/extdata/r-
logo.png"

create_presentation(stimuli = c("rzeka", "drzewo", my_image),
external = 3,
output_file = "second_example",
output_dir = "data/")

Here is the result.

10

https://agricolamz.github.io/phonfieldwork/additional/first_example.html
https://agricolamz.github.io/phonfieldwork/additional/second_example.html

Create a presentation based on a list of stimuli
create_presentation(stimuli = my_stimuli, # it is "tip" "tap" "top"

output_file = "first_example",
output_dir = "data/")

Here is the result.

It is also possible to use images (or .gif) as a stimuli:
my_image <- system.file("extdata", "r-logo.png", package = "phonfieldwork")
my_image

[1] "/home/agricolamz/R/x86_64-pc-linux-gnu-library/4.0/phonfieldwork/extdata/r-
logo.png"

create_presentation(stimuli = c("rzeka", "drzewo", my_image),
external = 3,
output_file = "second_example",
output_dir = "data/")

Here is the result. 10

https://agricolamz.github.io/phonfieldwork/additional/first_example.html
https://agricolamz.github.io/phonfieldwork/additional/second_example.html

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

11

Obtained data

After collecting data and removing soundfiles with unsuccesful
elicitations, one could end up with the following structure:

├── s1
│ ├── 01.wav
│ ├── 02.wav
│ └── 03.wav
├── s2
│ ├── 01.wav
│ ├── 02.wav
│ └── 03.wav

12

Rename collected data
rename_soundfiles(stimuli = my_stimuli, # it is "tip" "tap" "top"

prefix = "s1_",
path = "data/s1/")

├── s1
│ ├── backup
│ │ ├── 01.wav
│ │ ├── 02.wav
│ │ └── 03.wav
│ ├── s1_tap.wav
│ ├── s1_tip.wav
│ └── s1_top.wav
├── s2
│ ├── 01.wav
│ ├── 02.wav
│ └── 03.wav

13

Rename collected data
rename_soundfiles(stimuli = my_stimuli, # it is "tip" "tap" "top"

prefix = paste0(1:3, "_"),
suffix = "_s2",
path = "data/s2/",
backup = FALSE)

├── s1
│ ├── backup
│ │ ├── 01.wav
│ │ ├── 02.wav
│ │ └── 03.wav
│ ├── s1_tap.wav
│ ├── s1_tip.wav
│ └── s1_top.wav
├── s2
│ ├── 1_tip_s2.wav
│ ├── 2_tap_s2.wav
│ └── 3_top_s2.wav 14

Rename collected data

Sometimes it is better to keep and order that will deal with the computer
sorting:
add_leading_symbols(1:105)

[1] "001" "002" "003" "004" "005" "006" "007" "008" "009" "010" "011" "012"
[13] "013" "014" "015" "016" "017" "018" "019" "020" "021" "022" "023" "024"
[25] "025" "026" "027" "028" "029" "030" "031" "032" "033" "034" "035" "036"
[37] "037" "038" "039" "040" "041" "042" "043" "044" "045" "046" "047" "048"
[49] "049" "050" "051" "052" "053" "054" "055" "056" "057" "058" "059" "060"
[61] "061" "062" "063" "064" "065" "066" "067" "068" "069" "070" "071" "072"
[73] "073" "074" "075" "076" "077" "078" "079" "080" "081" "082" "083" "084"
[85] "085" "086" "087" "088" "089" "090" "091" "092" "093" "094" "095" "096"
[97] "097" "098" "099" "100" "101" "102" "103" "104" "105"

So it is better to use the result of add_leading_symbols() as a prefix during the
renaming of a huge amount of files.

15

Get sound duration

Sometimes it is useful to get information about sound duration:
get_sound_duration("data/s1/s1_tap.wav")

file duration
1 s1_tap.wav 0.4299093

get_sound_duration(sounds_from_folder = "data/s2/")

file duration
1 1_tip_s2.wav 0.5866440
2 2_tap_s2.wav 0.5343991
3 3_top_s2.wav 0.6650113

16

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

17

Merge all data together

After all the files are renamed, you can merge them into one:
concatenate_soundfiles(path = "data/s1/",

result_file_name = "s1_all")

data/s1
├── backup
│ ├── 01.wav
│ ├── 02.wav
│ └── 03.wav
├── s1_all.TextGrid
├── s1_all.wav
├── s1_tap.wav
├── s1_tip.wav
└── s1_top.wav

18

Merge all data together
s1_all

0

1

2

3

4

5

F
re

qu
en

cy
 (

kH
z)

K
ai

se
r

w
in

do
w

 (
le

ng
th

: 5
 m

s,
 ..

: 2
),

 d
yn

am
ic

 r
an

ge
: 5

0
(d

B
)

T
he

 s
pe

ct
ra

l s
lo

pe
 is

 in
cr

ea
se

d
by

 6
 d

B
. p

er
 o

ct
av

e
ab

ov
e

50
 H

z

time (ms)

s1_tap.wav s1_tip.wav s1_top.wav

0 200 400 600 800 1000 1200

19

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

20

Annotate your data

It is possible to create annotation in advance (since file concatination is
made according to files sorted on the comuter I use the sort() function in
order to make correct annotation):
annotate_textgrid(annotation = sort(my_stimuli),

textgrid = "data/s1/s1_all.TextGrid")

21

Annotate your data
s1_all

0

1

2

3

4

5

F
re

qu
en

cy
 (

kH
z)

K
ai

se
r

w
in

do
w

 (
le

ng
th

: 5
 m

s,
 ..

: 2
),

 d
yn

am
ic

 r
an

ge
: 5

0
(d

B
)

T
he

 s
pe

ct
ra

l s
lo

pe
 is

 in
cr

ea
se

d
by

 6
 d

B
. p

er
 o

ct
av

e
ab

ov
e

50
 H

z

time (ms)

tap tip top

s1_tap.wav s1_tip.wav s1_top.wav

0 200 400 600 800 1000 1200

22

Create subannotation

Imagine that we are interested in annotation of vowels. The most
common solution will be open Praat and create new annotations. But it is
also possible to create them in advance. The idea that you choose some
baseline tier that later will be automatically cutted into smaller pieces on
the other tier.
create_subannotation(textgrid = "data/s1/s1_all.TextGrid",

tier = 1, # this is a baseline tier
n_of_annotations = 3) # how many empty annotations per unit?

23

Annotate subannotation in advance
s1_all

0

1

2

3

4

5

F
re

qu
en

cy
 (

kH
z)

K
ai

se
r

w
in

do
w

 (
le

ng
th

: 5
 m

s,
 ..

: 2
),

 d
yn

am
ic

 r
an

ge
: 5

0
(d

B
)

T
he

 s
pe

ct
ra

l s
lo

pe
 is

 in
cr

ea
se

d
by

 6
 d

B
. p

er
 o

ct
av

e
ab

ov
e

50
 H

z

time (ms)

tap tip top

s1_tap.wav s1_tip.wav s1_top.wav

0 200 400 600 800 1000 1200

24

Annotate subannotation in advance

Now we can annotate created tier:
annotate_textgrid(annotation = c("", "æ", "", "", "ı", "", "", "ɒ", ""),

textgrid = "data/s1/s1_all.TextGrid",
tier = 3,
backup = FALSE)

List annotations by hand is a boring task, so if you have a prepared list of
annotations, the merege could be done with the following code:
vowels <- c("æ", "ı", "ɒ")
unlist(lapply(vowels, function(x){c("", x, "")}))

[1] "" "æ" "" "" "ı" "" "" "ɒ" ""

25

Create subannotation

26

The only thing left is to move annotation boundaries

27

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

28

Data viewer

Sound viewer (here is an example) is a useful tool that combine together
your annotations and make it searchable. It is also produce a ready to go
.html file that could be uploaded on the server (e. g. to Github Pages) and
be availible for anyone in the world.

In order to do that we need:

• seperate folder with soundfiles
• separate folder with spectorgrams (optional)
• data.framewith data about utterances or speakers

29

https://agricolamz.github.io/phonfieldwork/additional/stimuli_viewer.html

Data extraction

First, it is important to create a folder where all of the extracted files will
be stored:
dir.create("data/s1/s1_sounds")

It is possible extract to extract all annotated files based on an annotation
tier:
extract_intervals(file_name = "data/s1/s1_all.wav",

textgrid = "data/s1/s1_all.TextGrid",
tier = 3,
path = "data/s1/s1_sounds/",
prefix = "s1_")

30

Data extraction

After those commands, one could end up with the following structure:

data/s1
├── backup
│ ├── 01.wav
│ ├── 02.wav
│ └── 03.wav
├── s1_all.TextGrid
├── s1_all.wav
├── s1_sounds
│ ├── 1_s1_æ.wav
│ ├── 2_s1_ı.wav
│ └── 3_s1_ɒ.wav
├── s1_tap.wav
├── s1_tip.wav
└── s1_top.wav

31

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite
32

Sound visulization in phonfieldwork
The easiest way to visualise sound in phonfieldwork:
draw_sound(file_name = "data/s1/s1_tap.wav")

0

1

2

3

4

5

F
re

qu
en

cy
 (

kH
z)

K
ai

se
r

w
in

do
w

 (
le

ng
th

: 5
 m

s,
 ..

: 2
),

 d
yn

am
ic

 r
an

ge
: 5

0
(d

B
)

T
he

 s
pe

ct
ra

l s
lo

pe
 is

 in
cr

ea
se

d
by

 6
 d

B
. p

er
 o

ct
av

e
ab

ov
e

50
 H

z

0 100 200 300 400

time (ms)

33

Sound visulization in phonfieldwork
draw_sound(file_name = "data/s1/s1_all.wav",

annotation = "data/s1/s1_all.TextGrid")

draw_sound("data/s1/s1_all.wav",
"data/s1/s1_all.TextGrid",
from = 0.4, to = 0.95)

34

Create multiple spectrograms
draw_sound(sounds_from_folder = "data/s1/s1_sounds/",

pic_folder_name = "s1_pics")

data/s1
├── backup
│ ├── 01.wav
│ ├── 02.wav
│ └── 03.wav
├── s1_all.TextGrid
├── s1_all.wav
├── s1_pics
│ ├── 1_s1_æ.png
│ ├── 2_s1_ı.png
│ └── 3_s1_ɒ.png
├── s1_sounds
│ ├── 1_s1_æ.wav
│ ├── 2_s1_ı.wav
│ └── 3_s1_ɒ.wav
├── s1_tap.wav
├── s1_tip.wav
└── s1_top.wav
head [error opening dir]
18 [error opening dir]
##
3 directories, 14 files

35

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

36

Create a viewer
• seperate folder with soundfiles
• separate folder with spectorgrams (optional)
• → data.frame with data about utterances or speakers

df <- data.frame(word = c("tap", "tip", "top"),
sounds = c("æ", "ı", "ɒ"))

df

word sounds
1 tap æ
2 tip ı
3 top ɒ

create_viewer(audio_dir = "data/s1/s1_sounds/",
picture_dir = "data/s1/s1_pics/",
table = df,
output_dir = "data/s1/",
output_file = "stimuli_viewer")

37

https://agricolamz.github.io/phonfieldwork/additional/stimuli_viewer.html

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

38

Read linguistic files into R

• textgrid_to_df() (Praat)
• eaf_to_df() (ELAN)
• exb_to_df() (EXMARaLDA)
• srt_to_df() (subtitle file)
• audacity_to_df() (Audacity)
• flextext_to_df() (FieldWorks)

39

Read linguistic files into R
draw_sound(file_name = "data/test.wav",

annotation = eaf_to_df("data/test.eaf"))

0

1

2

3

4

5

F
re

qu
en

cy
 (

kH
z)

K
ai

se
r

w
in

do
w

 (
le

ng
th

: 5
 m

s,
 ..

: 2
),

 d
yn

am
ic

 r
an

ge
: 5

0
(d

B
)

T
he

 s
pe

ct
ra

l s
lo

pe
 is

 in
cr

ea
se

d
by

 6
 d

B
. p

er
 o

ct
av

e
ab

ov
e

50
 H

z

time (ms)

t e s t

C V C C

0 100 200 300 400 500 600

40

Outline of the talk
Introduction
Installation of the package

Creating your presentation

Data renaming

Data merging

Data annotation
Data extraction
Data visulization
Creating a data viewer – template for the data sharing

Reading data from different linguistic sources

Get help and cite

41

Get help and cite
You can always write an email or open an issue on GitHub, asking some
questions.

The most recent citation information is avalible with this command:
citation("phonfieldwork")

##
Moroz G (2020). _Phonetic fieldwork and experiments with phonfieldwork
package_. <URL: https://CRAN.R-project.org/package=phonfieldwork>.
##
A BibTeX entry for LaTeX users is
##
@Manual{,
title = {Phonetic fieldwork and experiments with phonfieldwork package},
author = {George Moroz},
year = {2020},
url = {https://CRAN.R-project.org/package=phonfieldwork},
} 42

https://github.com/agricolamz/phonfieldwork/issues

References

Boersma, P. andWeenink, D. (2019). Praat: doing phonetics by computer
(version 5.3.51)[computer program] version 6.0.25, retrieved 15
november 2019 from http://www.praat.org/.

Bořil, T. and Skarnitzl, R. (2016). Tools rpraat and mpraat. In Sojka, P.,
Horák, A., Kopeček, I., and Pala, K., editors, Text, Speech, and Dialogue:
19th International Conference, TSD 2016, Brno, Czech Republic,
September 12-16, 2016, Proceedings, pages 367–374, Cham. Springer
International Publishing.

Brugman, H., Russel, A., and Nijmegen, X. (2004). Annotating
Multi-media/Multi-modal Resources with ELAN. In LREC.

Lubbers, M. and Torreira, F. (2013). Pympi-ling: a Python module for
processing ELANs EAF and Praats TextGrid annotation files.

43

References

Peirce, J. W., Gray, J. R., Simpson, S., MacAskill, M. R., Höchenberger, R.,
Sogo, H., Kastman, E., and Lindeløv, J. (2009). Psychopy2: experiments
in behavior made easy. Behavior ResearchMethods, 51(1):195–203.

Reidy, P. (2016). textgRid: Praat TextGrid Objects in R. R package version
1.0.1.

Schmidt, T. andWörner, K. (2009). Exmaralda–creating, analysing and
sharing spoken language corpora for pragmatic research. Pragmatics.
Quarterly Publication of the International Pragmatics Association
(IPrA), 19(4):565–582.

44

	Introduction
	Installation of the package
	Creating your presentation
	Data renaming
	Data merging
	Data annotation
	Data extraction
	Data visulization
	Creating a data viewer – template for the data sharing
	Reading data from different linguistic sources
	Get help and cite
	Список литературы

